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SOLUTIONS TO COMPRESSIBLE FLCOW THRCUGH CASCADES
COF BLADES WITH EXAMPLES OF USE
By John T. Sinnette, Jr., George R. Costello and

Robert L. Cummings

SUMMARY

Four necessary conditions for steady irrotational compressible flow
through a straight cascade of blades are derived from the irrotationality
condition and the conservation of mass and momentum. Expressions are
obtained which measure the degree to which an gpproximaste compressible-
flow solution departs from these conditions. The expressions msey be
used as a measure not only of how well a given flow solution approxi-
mates the flow of the usual polytropic gas, but also of how well it
spproximates the flow of an arbitrary barotropic fluid.

As 11lustrations of the use of the error expressions, they are
applied to three basically different types of approximation to the flow
of a polytropic gas through a cascade of typlcal compressor blaeding;
nemely, (1) the incompressible approximation, (2) the Prandtl-Glauert
epproximation, and (3) an approximation based on & linear relation
between pressure and specific volume. The gpproximation based on the
linear pressure-volume relatlon gave much the best agreement by satis-
fying the irrotationality and continuity conditions exactly and the -
momentum conditions within sbout 1 percent. Although 1t iz shown that
in the Prandtl-Glauert approximetion, the four necessary conditions for
the compressible flow are setisfied to the extent that terms higher than
the first order inh the perturbation velocity are negligible, the errors
resulting from this lineer approximation were so large for a typical
compressor cascade that thils approximetion was no better than the incom-
pressible approximation (maximum error expression, 19 percent). When
both parallel and normal components of the perturbation velocity were
considered in camputing the resultent compressible velocity, however,
appreclably better accuracy (meximum error expression, 7 percent) was
obtained. '
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INTRODUCTION

The compressible flow along the blade surface must be accurately
determined 1n designing blade rows for high loading and high subsonic
Mach numbers in order to avold excessive local velocities and to prevent
flow separation. Because the solution for the two-dimensional potentisl
flow of a compressible perfect fluld through a cascade of blades cannot
be obtained anslytically, some approximate method must be used., The
methods of approximstion consist in replacing the originsl partial dif-
ferential equation by elther a simpler partial differential equetion or
a difference equation and solving. The solution of the simpler equation
may involve additional approximations, such as modified boundary condi-
tions.

Some methods of approximation give the flow throughout the field
and others permit the determination of the flow on the blade surface
directly. For all methods, however, it is desirable to obtain high
accuracy on the blade surface where the conditions are the most critical
because: there the veloclty reaches its maximum value end its distribu-
tion along the blade surface determines the boundary-layer behavior. In
general, the errors Involved in the approximate methods are of two
types: (1) errors erising from spproximating the exact-differential
equation; and (2) errors arising in the solution of the simplified equa-
tion. Because the spproximate solutions do not usually glve in them-
gelves a convenlent means of checking the over-all accura¢y obtailned, an
investigation was conducted at the NACA Lewis laborstory to cbtain cri-
terions for measuring and comparing the accurecy or consistency of the
various epproximate compressible-flow solutions., In a manner similar to
that used by Welnig in reference 1 to obtain checks for the numerical
accuracy of incompressible~flow solutions, four integral relations based
on the necessary conditions of irrotationslity and conservation of mass
and momentum were obtained. ZError expressions which give the deviation
of an approximate compressgible-flow sclution from these necessary con-
ditions are presented for measuring the accuracy of compressible-flow
solutions. Because the expressions are gilven in a general form which
permits using an arbltrary relation between pressure and density, they
may be used to estimate how closely a given solution approximates the
flow of any arbitrary barotropic fluid. )

As an illustration of the application, the integral expressions are
used to evaluate the relative accuracy of three different methods of
approximating the usual compressible flow of & polytropic gas (& perfect
gas with constant specific heat) through a cagcade of blades. The three
methods of approximation compared are: (1) the incompressible potential
flow epproximation, (2) the Prandtl-Glauert spproximation as adapted to
cascades by Woolard (reference 2), and (3) an approximation based on the
linear pressure~volume relatlion ae applied to cescades in reference 3.
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THEORY .

The relations for conservation of mass and momentum for steady two-
dimensional compressible flow may be written

c

yg o ax + oV (7, a7 + vy &)] =0 (2)

C

and

ﬁﬁ E—p dy + oV, (~V, dy + vy d.x)] =0 (3)
c

where the contour Integrals are evaluated around any circuit O enclos-
ing only Ffluid, that is, not enclosing any blades. (A1l symbols are
defined in appendix A.) The irrotationality condition, which requires
the circulaetion around the path C +to be zero, mey be written in the
form

(Vy @x + Vo dy) =0 (4)
c ' .

Equations (1) to (4) would, of course, be true for either direction of
integration along C, but this direction was taken as clockwise for the
sake of definiteness,

If the contour integrals through a cascade of blades are evaluated
along the contour C Indiceted by errows along abedefgha in figure 1,
the portions of the integrals on the free sections of one stagnetion
streamliine ha and be cancel the portions on the free sections of the
other stagnation streamline fg and de because the integrands are
equal at corresponding points and the integrations are in opposite
directions. The only remaining portions of the contour integrels ere
those along &b and ef, which give the integrals around the blade,
and those along c¢d and gh, which can be readily evaluated in terms
of the uniform upstream and downstream conditions. The contour integrals
in equations (1) to (4) thus become
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| d
5&(—9\’,{ dy + oV, dx) = —f PVx &y - fpvx dy = (pVy)18 = (oVy) 28
C c g

(s)
5@{ Ep dx + pVy(-Vy &y + v d.x)-J
c
b £ d h
= pm+fpﬂ—fpvyvx®-fpvyvxw
a e c g
= jé‘p dx + (pVny)lS - (pVny)ZS (6)
.

h%[—.‘9dy+pVx(-Vxdar+V3j,<3-x):]
C

2 2
—fbpdy -—j\rpdy —fpdy —fpdy —fpvxdy —fpvxdy
a e c g c g

! __
| | h
\yg(vxdx+vydy)=fvsds+fvsds+/“Vydy+fvydy
C a e c g

= %VS ds - Vl,y.S + VZ,yS (8)
B
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where B iIndicates the integration path around the blede contour
(counterclockwise) and Vg 1s teken as the component of the velocity in

the direction of integration or increasing s=.

For any potential flow in which the density is & known function of
the pressure, the density and the pressure can be expressed as a func-
tion of the velocity by meens of Bernoulli's equation

dp . V@
jpiaﬁv**z“ (2)

Consequently, i1f the aspproximaste compressible~-flow solution is given in
terme of the velocity distribution, all the separate portions of the
contour integrals can be eveluated and the magnitude of the deviation
from the necessary conditions (1) to (4) determined. These deviations
are expressed as follows: +the percentage error in mess flow

(pVy) o = (AVy)q
= . X 100 (10)

the error in blade force components ag percent of the resultant force

yg p ax - (i) - (7,0, s

= X 100

S /J[(pvyvx)Z - (pvyvx)l]z + [PZ'Pl + (pvxz)z - (pvxz)l]z

(11)
and

‘%P dy - [Pz'Pl + (pVB)g - (psz)]:]S
B

By = X 100

° /‘/E"c‘-' Py *+ (”sz)z - (pvxz)l]z ¥ [(pvyvx)z - (pvy"'x)l]2

(12)

and the percentage error in circulation
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9é Vg ds - (vl,y - vz,y)s

°r = (V) 5 - V5 )8

X 100 (13)

2,y

EVATLUATION OF THREE TYPES OF COMPRESSIBLE-FLOW
APPROXIMATION USING ERROR EXPRESSIONS

Three different methods were used for spproximating the compres-
sible flow through a cascade of typlcal compressor blades to serve as
an illustration of practical application of the error expressions (10)
to (13) and their relative accuracy was estimated by the use of these
four error expressions. - o T :

Incompressible flow as approximstion to compreseible flow. - For
many applications, incompressible-flow solutions have proved to be
satisfactory approximations to the desired compressible-flow solutions.
Because of this observation and because of the relative simplicity of
incompressible flow, until recently practically all the extensive
literature on computed flow through cescadés has been_devoted to incom-
pressible flow (most of the literature prior to 1949 is sumearized in
reference 4). The first approximetion method investigated is therefore
an incompressible approximation. In thils epproximstion, the dimension-
less compressible velocity Vc/aT i1s assumed to be equal everywhere to

the velocity Vi for some known incompressible-flow solution. Inas-

much as the velocity for any incompressible flow may be altered by a
scale factor, a family of compressible~-Flow approximations can be
obtained from any known incompressible solution. The accuracy of the
gpproximation decreases as the scale of the dimensionless compressible
veloclty Vc/&r, and hence the Mach number M, is increased.

In order that the exemple Illustrating the application of the
error expressions might be of practicel interest, the cascade and the
scale of the velocities were chosen to be representative of axial-flow
compressors. The incompressible flow was obteined by a numerical solu-
tion using the theoretically exact lnverse method of reference 5 wherein
the blade shape is computed from the prescribed velocity distribution.
The velocity distribution chosen and the resulting cascade geometry for
this exeample are shown in figures 2 and 3, réspectively. In this
example, as well as in those following in this report, the total blade
arc length was teken as 2xn. The maximum dimensionless compressible
veloeity on the blade obtained by this approximstion is 0.7558, which
corresponds to a Mach nunber of 0,8031.
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In order to obtain measures of the accuracy of this approximstion
to the ususl compresgible flow of a polytropic gas, the error expres=~
sions (10) to (13) were computed using the relations for the adisbatic

flow

and

L
v, 2 r-1 o
59_ ={1 - _2_1 _ég (14)
T &
J
y-1
D . r-L Ve (15)
D T2 T2
T am

These relstions may be readily obtained from the genersl Bernoulli equa-
tion (9) using the adisbatic relation for & polytropic gas

5 (&)

Because the hlade-profile velocities of the incompressible flow on
which this epproximation was based were computed at equally spaced
points on the unit circle into which the blade profile is transformed,
the integrals also were expressed in terms of the unit circle in order
that Simpson's rule might readily be epplied. Thus

27 N\
ax
\ggpd.}c:f p(6) S a0
B 0
2

L8

p dy = n(6) &L as s (17)

n
ds
ngs as Vg(6) 5 a0
B 0 J
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Although the incompressible solution on which this approximstion to
compressible flow was based was obtained by a theoretically exact method,
there still remain numerlcal inaccuracies due to rounded-off values,
approximation methods for numerical integration, etc. It—was therefore
desirable to have some measure of the accuracy of the incompressible
solution itself. The accuracy of the incompressible solution was meas- —
ured by the same expressions (10) to (13) as for the compressible '
epproximation but with constent density and with the pressures obtained —

from Bernoulli's equation for incompressible flow -
&
3V
2
D =P - Lg- (18)
The numericel values of the error expressions obtained for the
incompressible solution and the incompressible approximation to a com~
pressible flow with ¥ = 1.4 are shown in the followlng teble: .
Method ‘Error .
(percent) o _
Sy 5y 5y .SP ) )
Incompressible flow 0.00 | -0.09 |~ 0.06 | -0.07
Incompressible epproxi- ‘ L
metion to compressible .
flow 6.72 2.05 | =14.,14¢ | -0.07

A comparison of the relative errors in this table indicates that the

numericel insccuracies in obtaining the incompressible solution are

quite insignificant compared with the inaccurscies involved in this - -
approximstion to compressible flow. The large percentage error in the -
x-component of force indicates that the incompressible flow is & poor

approximation to compressible flow through the cascade at this Mach

number,

Prandtl-Glauert spproximation. - The incompressible solution was
next used to obtailn a compressible-flow solution based on the Prandtl-
Glauert approximastion as applied to cascades by Woolard (reference 2).
This approximation is based on the linearized equation for the
perturbation-velocity potential and uses only linear terms in the
perturbation-velocity components. Woolard comsiders the vector mean of
the upstream end downstream incompressible velocities Vm i1 @as the -

reference velocity and deviation from this veloclty as the perturbation
veloclity. If the transformstion
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Xy =X, Y; =QY, ®; = &b,

(19)
Vm,i = Vm,c =Vp

ie used vhere £= A/l-Mmz and X Is the coordinaste parallel to,

and Y, +the coordinate normsel to the vector mesn veloeity, & linear
spproximation to & compressible flow through a cascade is obtained from
an incompressible flow through a related cascade., The compressible cas-
cade has the same chord and spacing in the X-direction Sy as the

incompressible cascade, but the specing in the Y-direction Sy is

increased by the factor 1/Q2. The ratio of the compressible to the
incompressible values of blade thickness, camber, snd alr turning angle
will be equal (within the linesr spproximation) to £/k. It is shown
in eppendix B that the four integral expressions (1) to (4) are satis-
fied wlthin the linear terms In the perturbetion-velocity components for
the preceding interpretation of the Prandtl~Glauert rule.

For the linear approximation to be reasonsably accurate, however, it
is necessary that the angle of attack, turning angle, blade camber,
blade thickness, blade surface slope, etc. be sufficlently small that
the compressible and incompressible perturbation veloclties be very
small compared with the mean velocity Vy. In most practical cases
these conditions will not be strictly satisfied everywhere and, there-
fore, expressions (10) to (13) serve as convenient measures of resulting
mean errors in eny particular exasmple. As an illustration of this use,
the preceding interpretation of the Prandtl-Gleauert rule for the case
of k =2 was applied to the Incompressible~flow solution discussed
previously, and the error expressions were determined for this approxi-
mation to compressible flow. In this case (k =Q ) » the blade section
and the turning sngle are the seme (within the lineer approximation) as
for the incompressible flow and for the incompressible approximation,
but the blade spacing Sy is increased by the factor l/ﬂ. Because of
this change in Sy, +the flow angles with respect to the normel to the
cascade axis are also changed. The relation between the mesn flow

angles is given by

tan Ay o = Qtan Ay 4

The mean Mach number was teken the same as for the incompressible
approximgtion to compressible flow in order that the error expressions
might be used to measure the relative accuracy of the two spproximstions
under comparsble conditions. The cascade geometry for the compressible
flow is shown in figure 4. The blade spacing and orientation for the
incompressible cascade are also shown for camparison.
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Inesmuch as the Prandtl-~Glauert theory is based on the assumption
that the perturbstion velocity is sufficiently small that powers higher
then the first in the perturbation-velocity components may be neglected
throughout, the use of other than linearized expressions in these com-
ponents in computing the resultent velocity might seem unjustifiable.
For most practical cases, however, quite different results are cbtained
if the linearized expression L _ R

V=Vp+u (20)

1s used rather then the exact expression

Vv = 4/(Vm +u)é + ve (21)

The compressible velocity distribution has been computed for the cascade
example of figure 4 by both equation (20) and equation (21) using the
Prandtl-Glauert rule for obtaining the campressible perturbation-
velocity components (with %k =£2).

ue = w/02 Ve = Vi

The resulting veloclty distributions are shown in figure 5. The appre-~
ciable differences over & large pert of. the upper surface are a result
of the departures of the direction of thé tangent to the upper surface
from a direction parallel to the mean velocity. (See fig. 4.) Both
velocity distributions have been faired over a small region near the
nose and the tail of the blade to glve a single stagnation point in
these regions, but this fairing was over such s small region as to be
hardly detectable on the scale of figure 5. Because of the appreclable
difference between the two velocity distributions, a corresponding dif-
ference in the value of the error expressions might be expected. The
values of the error expressions using equations (14) and (15) with

v = 1.4 and based both on the exact equatlons for the resultant veloc~
ity and the velocity components and on_the corresponding equations
involving only the linear terms in the perturbatlion—veloclty components
are given in the following table:

Method Error
(percent)

By By By Sp

Linearized velocity relation | -0.11 | -15.34 | -12.23 | ~18.91
Exact velocity relation 0.02 | - 8.63 | -~ 3.72 | = 4,45

2251
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The Prandtl-Glauert rule, with the use of the linearized relation
for the velocity, gives error expressions, of which the maximum for this
example is of about the same order of magnitude as for the incompressible
approximetion to compressible flow. Thus, gpparently little is to be
gained in the accuracy of the velocity distribution by the use of the
Prandtl-Glauert rule in this form when gpplied to typilcal compressor
blading of moderate camber. The results ghvould be even less accurate
for typicel turbine bleding in which the camber is generally much larger.

The reason for this poor performance is clarified by the comparison
of the incompreseible velocity distribution based on the same linearized
approximation with the original incompressible veloclty distribution in
figure 6. The difference is of the same order of masgnitude as that
between the two interpretations of the Prandtl-Glauert rule shown in
figure 5. The values of the error expressions for the linesrized
approximation to the incompressible flow, as campared with those for the
theoreticelly exact incompressible flow (which represent computationel
insccuracies) are as follows:

Method Error
(percent)

% | O Ox By

Linegrized veloclty relation{ 0.26| -2.77 | -11.92 | -17.90
Exact velocity relation 0.00| -0.09] - 0.06 | - 0.07

The preceding teble together with figures 5 and 8 indicates that the
errors due to linearization are quite large. In fact, these errors are
of the same order of magnitude as the compressibility correction for
this cascade exsmple as is seen by comparing the lineesrlzation error
shown in figure 6 with the compressibility correction shown in figure 7.
The considergbly better results cbtailned from the Prandtl-Glauert rule
when using the exact relations than when using the linearized relations
is thus a result of elimingtion of the direct error due to linearization
for the Incompressible flow. There remgins, however, the error due to
linearization in computing the compressibility correction. Whenever the
direct errors due to linearization are as large as or larger than the
compressibility correction, more accurate results msy be expected if
exact relgtions for computing the resultant velocities and velocity com-
ponents from the perturbatlion velocities are used.

Approximation based on linear pressure-volume relation. - As a
third type of spproximation method to be investigated, the inverse
method of reference 3 based on the use of & linear relation bebtween
pressure and specific volume was used. In this method, a proportionality
constant 1s determined between the dimensionless compressible velocities
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(retios of fluid velocity to stagnation velocity of sound) for the
approximated compressible flow of a polytroplc gas end a theoretically
exact compressible flow of an ideel fluld with a linear relation between
presgure and specific volume. The proportianality comstent is deter=-
mined in such a way that the continuity equation is satisfied for the
approximated flow, that is, &y = 0. Because the flow with the linear
pressure-volume relation is irfrotational, the spproximeted flow will
also be irrotationsl and thus satlsfy the circulation condition (4),
that is, 8, =0, within the numerical accuracy of the solution. The

momentum conditions (2) and (3) will not, however, be exactly satlisfied
and the values of——&y and Sx will therefore serve as a measure of the

accuracy of the approximation.

In order that this spproximation method might reasonably be com-
pered with the previously considered methods, it was desirable to obtain
a cascade gecomebry and flow conditions similar to the other approxims-
tions. Because thils approximetion as well as the incompressible~flow
approximetion was obtained from inverse design methods, it was Impossible
to obtain exactly the same blade geometry. Furthermore, the incompres-
sible spproximation and the Prandtl-Glauert approximstion are for some-
what different configurations becsuse of the different values of Sy.

The Mach number based on the vector mesn of the upstream and downstreanm
velocities was chosen the same for all the different approximations, and
the velocity distribution for the present approximation (fig. 8) was
chosen to be very nearly the same as for the exsmple of the Prandtl-
Glauert spproximstion in which the exact veloclty relation (fig. 5) was
used, but blade shape, blade specing, and flow angles are somewhgt Aif~
ferent (figs. 4 and 9). However, the differences between the different
approximation examplés are small enough to meske reletive values of the
error expression significant—Iin compsring the relative accuracy of the
different approximation methods. '

As iIn the case of the incompressible-~flow solution, it is desirable
to have some measure of the numerical inaccuracles of a particular solu=-
tion independent of the errors in aepproximating the desired flow of the
usual polytropic ges (r = 1.4). The numerigel inaccuracles in obtain-
ing the flow with a linear pressure-volume relation (v = -1) cean
readlly be obtained from the general error expressions (10) to (13) by
using the proper equations for dimensionless pressure and density for a
gas with linear pressure-volume relation

p=A- mﬁff::;; (22)

p= S — . (23)

2251
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where A 1s an arbitrery constent and q is the dimensioniess veloclty
(ratio of velocity to stagnation velocity of sound) for this gas. The
constant A does not affect the values of any of the error expressions
for closed blaede profiles and was therefore taken as zero.

For the present cascade example, the error expressions have been
celculated both for the linearized pressure-volume flow (y = -1) by
using equations (22) and (23) and for a polytropic gas with ¥ = 1.4 by
using equations (14) and (15); the results are shown in the following
table:

Method Error
(percent)

BM Sy Sx SP

Linearized pressure-volume flow| 0.00 | 0.47 0.46 | 0.00
Approximsted flow for v = 1.4 | 0.00 | -0.33 | -0.99 ] 0.00

Because this method is theoretically exact for the linearized pressure~
volume flow, the error expressions for this case are measures of the
numerical ingccuracies due to rounded-off values, integration epproxi-
mations, ete. The error expressions for the other case (y = 1.4) are
e measure of the cambined error due to numerical inaccuracies and the
inherent error resulting from assuming the velocity Vc for this flow

to be proportional to the velocity for the linearized pressure-volume
flow (v = -1). The errors for the approximated flow ere spparently
only slightly greater than the numerical inaccuracies in the calculegtion.
The error expressions have also been calculated for all the examples
given in reference 3 and for all cases were below 1 percent. Thus,
gpperently this method is quite accurate for a wide variety of exsmples
end is not limited to flow with smsll perturbstions from the mean veloc-
ity, as 1s the case with the Prandtl-Glauert spproximstion.

For convenlent comparison, the error expressions for the examples
of the different approximetions to flow with ¥y = 1.4 previously pre-
sented are summarized ss follows:

Method Error
(percent)

& | o | o | or

Incompreseible approximstion | 6.72 2,05 -14.14 | - 0,07
Prandtl-Glauert, linear

velocity relation -0.11| -15.34 | -12.23 | -18.91
Prandtl-Glauert, exact
velocity relation 0.02 | - 6.63| - 3.72| = 4.45

Approximation based on linear
pressure-volume relation 0.00| - 0.33] - 0.99 0.00
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DISCUSSION

It should be emphasized that the error expressions meesure how
clogely certaln necessary conditions, representetive of particularly
significant features of the flow, are satisfied; but even if they are all
zero, the solution may still be inaccurate, An infinite number of con-
ditions are required for & solution to be exact; namely, that 1t agree
with an exact solution everywhere. Inasmuch as the error expressions
are based on integrals, they are essentially particular methods of
averaging the errors of & solution. In certain pathological cases, the
errors may caencel each other in the Integration, giving e null value for
the error expressions, If they are used with discretion, however, the
error expressions furnish valusble checks on the accuracy of compressible-
flow solutions. -

Although the expressions msy be used in checking any type of
gpproximete solution, they are particularly valueble in checking solu-
tions which give the velocity or pressure distribution on the blade sur=-
face directly, as there are often no other convenient checks availlsble
in this case. For relaxatlon solutions or other solutions which give
the flow throughout the field, the resldual of the difference equation
apﬁ%oximating the differential equation furnishes other indications of
the error, but does not indicate the error involved in epproximsting the
differentisl equation. The error expressions thus furnish valuable
supplementary checks in these cases,

For convenience of discussion, 1t has previously been assumed that
the approximate flow solution is given in the form of the dimensionless
velocity distribution, but this is unnecessary. The solution may be
specified in any one of a variety of ways, such as the upstream and
downstream Mach nunbers and a pressure~coefficient distribution around
the blade. The error expressions would then be calculated using the
relations for density, pressure, and velocity in terms of the specified
variables which are exact for the fluid which it is desired to approxi-
mate.

Lewis Flight Propulsion Lsboratory,
National Advisory Committee for Aeronautics,
Cleveland, Chio, June 28, 195l1.
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APFENDIX A

SYMBOLS

The following symbols are used in this report:
arbitrary constant

veloclty of sound

Integration path slong blade contour
integretion path enclosing only fluid
arbitrary constant

Mach number

pressure

ratio of veloclty to stagnetion velocity of sound for gass with
linegr pressure~volume relation

cascade spacing

arc length

perturbation-velocity component parsllel to mean veiocity
velocity

rerturbation-velocity component normsl to mean veloclty

rectanguler coordinstes, parallel and normal, respectively, to
mean velocity

range of integratlion of Y on blade

rectanguler coordinates normal and parallel, respectively, to
cascede axis

ratio of specific heats
error in mass flow, percent (equation (10))

error in x~component of blade force, percent of resultant force
(equation (12))

15
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error in y-camponent of blade force, percent of resultant force
(equation (11))

8p  error in circulation, percent (equation (13))
e circle angle
A angle between velocity vector and normsl to cascade
o) density
o solidity
¢ perturbation~velocity potential
constant, l- Mmz
Subscripts:
1 far upstream of cascade
2 fer downstream of cascade
B elong blede contour
c compressible
i incompressible
m values with reference to vector meen of upstream and downstream
velocity
mex maximum value
s component in s-direction
T total or stagnation conditions -
X camponent in X-direction
X component in x-direction _ .
Y component in Y-direction
¥ component in y-direction

2251
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APPENDIX B

PROCF THAT EQUATIONS (1) TO (4) ARE SATISFIED WITHIN
LINEAR APPROXIMATION FOR PRANDTL-GLAUERT RULE

It will be shown that equations (1) to (4), which are evaluated
along contour C of figure 1, are satisfled for the Prendtl-Glsuert
gpproximation within linesr terms of the perturbation-velocity com-
ponents; that is, they are satisfied to the approximstion that higher-
order terms In the compressible and incompressible perturbation-veloclty
components may be neglected in comparison with the linear terms in com-
puting pressures, densities, and velocltlies for the compressible and
incompressible fiows. Equatlons which are accurate only within linear
terms in the perturbatlion velocity will be indicated by the sign .

In establishing that these equations are satisfied within this
linear spproximation, the equations are for convenience expressed in
terms of the coordingtes X,Y parallel and normsi, respectively, to the
mean velocity rather then in terms of the coordinates x,y normal end
parallel, respectively, to the cascade axis. The expressions in the new
coordinates may readily be obtalned from the general equations (1) to (4)
in the ssme msnner as equations (5) to (8) were cbtained. The resulting
expressions sre

- [tevaa - vy - [(om - (ovg)y sy - (1)

\%P ax - (PZ- pl)SX - [(pVXVY)Z - (pVXVY)]]SY
5 .

- [(OVYZ)Z - (pVYZ)l:lSX =0 (B2)

_5£p a¥ - (pg- IP]_)SY - (pVXZ)z - (vaz)ljsr
- a
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Vg ds + (VY,Z-VY,J_)SY - (VX,Z’VX,l)SX =0 (B4)
B

In order to check whether these equations are sgtisfied within the
lineer terms In the perturbation~velocity components u,v defined as

u = VX - Vm
and

'V'“—'VY

the equation will now be expressed in terms of these pertubation-velocity
components in which only linear terms will be considered. The values of

Vm’ Pp? P Sy, S, and chord are taken as standard or zeroth order.

The perturbetion-veloclity components u and v for both the compres-
sible and incompressible flow are assumed to be of the first order.
Camber, thickness, range of Y on a blade, snd turning sngle must then
be of the first order because of the relation along any streamline

X_ v .Y
ax Vm+u Vm

" The linearized expresslons are obtalned as follows:

T T )
- =1 -1
R 1-1—1‘@;(“:1_)2_&%
2 Vn 2
D _ am _ 8 : aq
N L r-lV¥n’
2 2 2 2
B ar ap
T
‘Y‘-
(r-1)Vp? o = r (B5)
2 Vp (v-1)v 2 T=
sl - o 5 M (] - - zm Vl'
1_TL]:.V_m_ m u
i 2 et
PV,
2 u m'm’ u
M l-y M- sl- o
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Hence
2 u .
PPy & =P V" T (B6)
m m'm T,
Similarly
o L
o s (-1 2 & - w2 u enVn®
- |1 - (y-1 =— =1 - —_— 1l - — (B7)
P Yo Vi M Vi TPy Vm
Therefore

Ve n pme(l - u 2 v“—) (l”vl) = PVm [l + (1-4,%) \-,u-] (B8)

(B9)

m

oVyZ m oV, mz(l - M 2 %)(1%> % oV, 2 l:l + (2-M,2) %ﬂ (B10)

oVEVY & 0V (B11)
m
pv2~pvzl’-2zo (B12)
Y *Fm'm Vi ‘

2 u guma.x
p aY| = Vi 2 ay| < |p.v 22X Ay
. 525 Pm¥m \ngm m'm Vg B
B B )
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where AYp 1ndicates range of integration of Y on the blade. BSince
both AYp and uygy are of the first order, the integral is equal to
zero to the first order. This merely meens that the blade force is
normel to the mean velocilty wilthin the linear epproximastion, a condition
which is exactly satisfied for incompressiblé flow. If these values are
substituted in equations (Bl) to (B4), the linearized form of each of
these equations for compressible flow results.

PmVm |- (1.Mmz> <u2;u1> SY,C - <V2—\-IE> SX,C s 0 (B13)
C C

m m

2 u Uz-u1 va-v1
PmVm | = Vg ) EB,c t Vo /o SX,c - Vo /o Sy,cl # O
B , c - . . - .. . —_
(B14)

pmez - < 1_Mm2> <u2‘2:l)c .o - (Vz;r;fll)c By,c|® O ~ (B15)

U =U Vomy )
u 2-U1 2=Vl
Wy | 8D (ﬂ)c s, - <--—Vm )c Sy, f(——vm )c Sy,o| %0 (B16)

sC _

Because equations (Bl3) and (B15) are identical and equatlions (Bl4) and
(Bl6) sre ldenticel, except for factors involving P and Vm, which

are of stendard order, the four independent—conditicns for the general

case (equations (BL) to (B4)) are reduced to two independent conditions
for the linear spproximation.

In proving that these conditions are satisfied for solutions
obtained by the Prandtl-Gleuert rule, they are expressed ag equivalent
conditions on the incompressible flow by the Prandtl-Glauert transforms-
.tion and it is then proved that these resulting conditiones are satisfied
within the linear gpproximation for the exasct solution of the incompres-
sible flow. ' '

2251
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From the basic Prandtl-Gleuert relations (equation (19)), the fol-
lowing additionel relations between the corresponding compressible and
incompressible flows are obtained (reference 2):

Sx,c = 5,1 S¢,c =5 5v,1 (B17)
U, = % uy Vo = % vy (B18)

The substitution of these values in the two independent equations (B13)
end (Bl4) gives the conditions on the compressible flow expressed in
terms of the corresponding incompressible flow as follows:

Q Up-uy v2-v1
vy 3| _[Z2L - | =0 (B19)
PmVm % ( Vg >i Sy, 1 < Vg >i S¢,1
21 u Up-uy Va-v1 -
PVm % 55 Qv;)i dXp 4 ( T )1 5%,1 +< T )1 Sy i ® 0O
B,i
(B20)

The incompressible flow on which the Prandtl-Glauert spproximstion is
based must satisfy the conditions (Bl) to (B4) with p constent and p
given by equation (18). As in the case of the compressible flow, the
linear approximation to these conditions gives only two independent con-
ditions, which mey be most easily obtaeined by considering these condi-
tione as the limiting case of a compressible flow as the Mach number
approaches zerc in equations (B13) and (Bl4). Thus

U=ty V2-v1 .
PmVm |~ < Vg )i Sy,1 "< T >i Sx,1| =0 (B21)

m

2 u ug-uy Va-vi -
oV jg (v—m)i aXg, 1 -< vm)i 5,1 +< ), Sy,i| =0 (B22)
B,i /
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Equation (Bl9) differs from equation (B21l) by the factor Q/k and
equation (B20) differs from equation (B22) by the factor 1/k. Thus,

if Q/x and 1/k are not large, the conditions on the compressible-
flow equations (B19) and (B20) obtained from the Prandtl-Glauert rule
are satisfied to the same order as the linearized conditions on the cor-
responding incompressible flow. According to equations (B18), this con-
dition is equivalent to the condition that the campressible
perturbation-velocity components u, and v, are of the seme crder of

megnitude as the corresponding components for the incompressible flow.

For the linearized form of the necessary conditions on the incom-
pressible flow to be satisfied within a glven accuracy, the incompres-
sible perturbation-veloclty components must be sufficiently small com-
pared with Vy and, consequently, blade-surface slope, blade camber,

blade thickness, sngle of attack, turning angle, etc. of the incompress-

ible cascade must be sufficiently small. In order to guarantee that
the corresponding compressible flow satisfy the necessary condition with
similar accuracy, the compressible perturbation velocities wu, and v,
must also be sufficiently small., If, in a given incompressible cascade,
the values of uj and vy are equal to the maximum aliowable values
for the required accuracy and it is required that values of u, and v,
for the corresponding compressible cascade not exceed these values, it
is necessary that k 2 1., Inasmuch.as the ratio of the compressible. to
the incompressible values of blade camber, blade thickness, angle of
attack, turning angle, etc. are equal to Q/k, the ratio of these quan-

tities must not be greater than 4/ 1-M? and, consequently, blade thick-

ness, turning angle, etc. for the compressible flow must be extremely
small 1f M, is near 1 in order for the Prandtl-Gleauert approximation

to be reasonably accurste.
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Figure 1. ~ Path of integration through cascade of blades used in
general analysis.
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Figure 2. - Veloeity distribution for incompressible flow and incompressible approximstion.
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Figure 3. - Cascade geometry for incompressible flow and incompressible approximation.
Mean Msch number, 0.5050; incompressible and compressible solidity, 0.9571.
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Figure 4, - Cascade geometry for Prandtl-Gleuert approximation to compressible flow,
Mean Mach number, 0.5050; compressible solidity, 0.8655; velocity V =/(Vy + u)2 + ve,
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»

2251

NACA TN 2501 29

Velocity, Ve/ap

8 —

V, =\ (Vg + w)@ + v2
T =V, =V g
B

]
2
|
A
I I
o] .5n x 1.5xn 2x
Arc length, s

Figure 5. - Veloclty distributions for Prendtl-Clauert approximstions.
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Figure 6. - Velocity distributions for exact incompressible flow and for linearized incompressible
flow, showing error resulting from linearization.
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Figure 7. - Velocity distribution for incompressible flow end for Prandtl-Glauert epproximetion,
showing magnitude of compressibility correction. Velocity V = \/(Vm + u)z + ve,
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Figure 8. - Velocity distribution for approximation with dimenslonless veldcity proportional to
that of linearized-pressure-volume flow.
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Figure 9. - Cascade geomebtry for spproximstion with dimensionless velocity
proportional to that of linearlzed-pressure-volume flow. Mean Mach number, 0,5050; e
solidity, 0.9856. oo
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